
Software Reliability Modelling and Prediction
with Hidden Markov Chains

Jean-Baptiste Durand

INRIA Rhône-Alpes

Grenoble, France

Jean-Baptiste.Durand@cirad.fr

Olivier Gaudoin

Institut National Polytechnique de Grenoble

Laboratoire LMC

Grenoble, France

Olivier.Gaudoin@imag.fr

Abstract

The purpose of this paper is to use the framework of hidden Markov chains for the modelling
of the failure and debugging process of software, and the prediction of software reliability. The
model parameters are estimated using the forward-backward EM algorithm and model selection
is done with the BIC criterion. The advantages and drawbacks of this approach with respect to
usual modelling are analyzed. Comparison is also done on real software failure data. The main
contribution of hidden Markov chain modelling is that it highlights the existence of homogeneous
periods in the debugging process, which allow one to identify major corrections or version updates.
In terms of reliability predictions, the hidden Markov chain model performs well on average with
respect to usual models, especially when the reliability is not regularly growing.

1 Software reliability modelling

Let Xi; i � 1, be the times between successive failures of a software. After each failure, the software is

corrected or not, and restarted. Debugging times are negligible or not taken into account. A huge number

of models for the failure process X = fXigi�1 have been proposed in the last 30 years (see a recent review

in Pham, 2000). The most popular class of models, because of its simplicity, is that of Non Homogeneous

Poisson Processes (NHPP), for which the failure intensity is a continuous function of time. However, this

assumption is not realistic because debugging should induce a discontinuity in failure intensity.

According to Littlewood (1989), two sources of uncertainty exist in the failure behavior of software

undergoing debugging. The �rst source of uncertainty is in the inputs: software inputs are chosen randomly

in the input space according to the operational pro�le. The second source of uncertainty is the e�ect of

debugging. It is logical to assume that the debugging of a fault at a given time depends only of the software

state at this time, and not of its past states. This leads to a Markovian modelling of the debugging process.

Moreover, software do not wear-out: if a piece of software is not modi�ed, its ability to fail does not change,

so the failure intensity between two debuggings should be constant. Then, all these assumptions lead to

another class of models, sometimes called the Markov Failure Rate (MFR, Gaudoin 1990) models, for which

there exists a Markov process � = f�igi�1 such that, conditionally to f�i = �igi�1, the times between

failures Xi are independent and exponentially distributed with respective parameters �i. �i is the software

failure rate after (i� 1)th debugging.

All these models assume that there is a correction for each failure, and that the debugging eÆciency

is homogeneous in time. In practice, after software failures, computers are often rebooted without any

correction. Debugging happens when a suÆciently large amount of failures has occurred. When a software

is in its operational life, there is a version update or introduction of a new release instead of debugging,

but both concepts can be handled in the same way. Even if a correction is done after each failure, most of

them are minor and there are sometimes major corrections, which can be considered as equivalent to version

updates. Software reliability data generally consist in a list of successive times between failures, and the

information on whether a correction has been performed or not, or whether corrections are minor or major,

is not available. Thus, it would be interesting to build software reliability models which could take this fact

into account. This is the case of the hidden Markov chain (HMC) modelling.



2 Modelling the software failure process with hidden Markov chains

In order to use the framework of hidden Markov chains, it is necessary to assume that the failure rate process

� takes values in a �nite set. Let K be the cardinal number of this set and f�(1); : : : ; �(K)g be the set of

possible values for the �i. The assumptions on X and � sum up as follows:

1. � is a discrete-valued homogeneous Markov chain starting from �1 = �(1); this chain is hidden since

the �i are not directly observable;

2. conditional on f�i = �igi�1, the times between failures fXigi�1 are independent;

3. conditional on f�i = �(j)g, Xi has an exponential distribution with parameter �(j).

Each trajectory of process X can be split into homogeneous zones, each zone corresponding to one value

�(j) of the failure rate process. In a given zone, the failure rate remains constant. In the software test period,

the homogeneous zones can be interpreted as periods where no corrections have occurred after failures, or

where the corrections introduced were minor and did not improve signi�cantly the failure rate. The jumps

correspond to corrections in the �rst case and major corrections in the second. In the software operational

life, the transitions between zones can be interpreted as introductions of version updates or new releases.

The advantage of the HMC model with regard to NHPP models is that it takes into account the disconti-

nuities in failure intensity caused by the debugging and the no wear-out property of software. The advantage

with regard to MFR models is that there is not necessarily a correction after each failure, which leads to the

existence of homogeneous periods.

3 Parameter estimation

Let � be the set of all parameters of the hidden Markov chain, given by:

1. The transition probabilities pjl = P (�i+1 = �(l)j�i = �(j)), 8i � 1; 1 � j � K; 1 � l � K. The

transition parameters amount to the matrix P de�ned by the pjl.

2. The values (�(1); : : : ; �(K)) of the failure rates.

For any sequence fzigi�1 and any couple of integers (i; j) such that i < j, let z
j
i denote (zi; : : : ; zj). The

HMC model is a typical case where the complete data can be split into the observed data xn1 and the missing

data �n1 . Then, the estimation of � is done with the EM algorithm (Dempster et al, 1977), dedicated to the

likelihood maximization in the context of missing values. This iterative algorithm starts from an initial value

�(0) of the parameters and creates a sequence f�(m)gm�0 whose likelihood grows. The sequence f�(m)gm�0

converges to the consistent solution of the likelihood equations when �(0) is close to the optimal solution.

Using the results of Baum et al (1970), �(m+1) is given by:

p̂
(m+1)

jl =

P
i
E
�(m) [11f�i=�(l);�i�1=�(j)g

jXn
1=x

n
1 ]P

i
E
�(m) [11f�i�1=�(j)g

jXn
1=x

n
1 ]

�̂(k);(m+1) =

�P
i
E
�(m) [11f�i=�(k)g

xijX
n
1=x

n
1 ]P

i
E
�(m) [11f�i=�(k)g

jXn
1=x

n
1 ]

��1

The expectations are computed recursively, using the forward-backward algorithm of Baum et al (1970).

3 initial values for �(0) are randomly chosen and 50 iterations are run for each value. Thus, three estimators

are obtained. The one which has maximal likelihood is used as starting position for the EM algorithm. The

algorithm is stopped when 1 000 iterations have been done, or when the relative increase of the log-likelihood

is below the threshold " = 10�6.



4 Restoration of the hidden states

With an estimate of �, it is possible to restore the hidden states, that is to say give a likely value to the

unknown state sequence �n1 . A natural way to restore the hidden states is to compute their most likely

value, conditionally to xn1 : argmax
�n1

P�(�
n
1 = �n1 jX

n
1 = xn1 ). This can be done by the Viterbi algorithm

(Forney, 1973). The comparison between original data and restored hidden states is easy since the expected

interfailure time when �i = �(j) is 1=�(j).

The restoration of the hidden states leads to the interpretation of sequences of successive equal states as

homogeneous zones in the failure process.

5 Choice of the number of hidden states and transition matrix

In the sections above, the number of possible failure rates K has been considered as known. Clearly, K is

not known in practice and has to be estimated. We use the BIC criterion (Bayesian Information Criterion

- Kass and Raftery, 1995): BIC(K) = log(P�̂K (x
n
1 )) �

�K
2
log(n), where log(P�̂K (x

n
1 )) is the maximum log-

likelihood for the hidden Markov chain with K hidden states and where �K is the number of independent

parameters in �K. The BIC criterion is composed of a term measuring the �t between the data and the

model and of a term penalizing complex models. Thus, maximizing this criterion hopefully leads to selecting

models o�ering a compromise between �t and complexity.

Until now, no particular assumption has been made on the transition matrix, which means that any

improvement or deterioration of the software failure rate is possible. In the case of pure reliability growth

models, each debugging reduces the software failure rate. Thus, any transition from a hidden state to a

previously visited hidden state must be forbidden. This assumption implies an upper diagonal transition

matrix. It is important to take also into account the possibility of imperfect debugging. Then, the return

to a previously visited state must be allowed. The easiest way to do so is to allow two transitions for each

state (except the initial and �nal ones): one to the last previously visited state, and one to the next new

visited state. This assumption implies a tridiagonal transition matrix. Other types of transition matrix are

possible. The choice of a type of matrix can be done by the BIC criterion.

6 Predictive validity and model comparison

The quality of reliability predictions provided by the hidden Markov chain model has to be assessed and

compared with those given by other software reliability growth models. The usual method for comparing

software reliability predictions is the so-called U-plot method (Keiller et al., 1983).

The idea of the method is to compute the ui = P�̂i(Xi � xijX
i�1
1 = xi�1

1 ). If the model is appropriate

and the estimation is of good quality, then the ui should be close to a sample of the uniform distribution over

[0; 1]. This closeness or predictive validity is measured by the Kolmogorov-Smirnov distance KS between

the empirical CDF of the ui and the true uniform CDF, which is F (x) = x on [0; 1]. The U-plot is the plot

of the empirical CDF of the ui. If several models are competing, the \best model" is the one for which KS

is the smallest.

7 Application and conclusion

The hidden Markov chain model has been used on two groups of real software failure data sets. The �rst

group consists of times between failures of nine American control-command software in the test period and

operational life (Musa, 1979). The second group consists of times between failures of four complex French

software in the test period (Gaudoin, 1990). Time unit is running clock time in both cases.

First of all, we present a complete treatment of one of these data sets, M40, for which n = 101. Figure

1 shows that the BIC criterion is maximum for a model with three hidden states and an upper diagonal

transition probability matrix. For this model, the parameter estimates are:

�
�̂(1) �̂(2) �̂(3)

�
= 10�4 �

�
0:5035 0:0908 0:0175

�



1 2 3 4 5 6 7
−1340

−1330

−1320

−1310

−1300

−1290

−1280

−1270

−1260

−1250

−1240
BIC values for data set M40

number of hidden states

B
IC

 v
al

ue
s

full transition matrix
upper diagonal transition matrix
tridiagonal transition matrix

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6 data set M40, 3−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n 
fa

ilu
re

s

times between failures
restored hidden states

Figure 1: Model selection with BIC and restoration of the hidden states for data set M40

P̂ =

2
4 0:9809 0:0191 0

0 0:9502 0:0498

0 0 1:0000

3
5

Then, it is easy to restore the hidden states, as shown in �gure 1. Three homogeneous periods clearly

appear in this �gure.

Finally, the HMC model is compared with some of the most usual software reliability models, using the

U-plot method. The main results of this study are the following ones.

� For all data sets, the selected number of hidden states is very small, from 1 to 4. This means that for

these software, very few major corrections seem to have occurred during the debugging process.

� Logically, the upper diagonal transition matrix gives the best result for data sets exhibiting almost

pure reliability growth. For data sets for which reliability is sometimes decreasing (probably due to

imperfect debugging), full or tridiagonal matrices are better.

� In terms of predictive validity, usual models perform better than HMC when there is a regular reliability

growth, and HMC is the best when there are some signi�cant imperfect debuggings.

� Long homogeneous periods are detected by the restoration of hidden states for almost all data sets,

leading to a clear interpretation in terms of identi�cation of major corrections.

References

Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximization technique occurring in the

statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41 , 164{171.

Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM

algorithm (with discussion). J.R.S.S. B 39 , 1{38.

Forney Jr., G. D. (1973). The Viterbi Algorithm. Proceedings of the IEEE 61 , 268{278.

Gaudoin, O. (1990). Outils statistiques pour l'�evaluation de la �abilit�e des logiciels. PhD thesis, Joseph

Fourier University, Grenoble (in French).

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J.A.S.A. 90 , 773{795.

Keiller, P. A., Littlewood, B., Miller, D. R. and Sofer, A. (1983). Comparison of software reliability

predictions. In Proc. 13th IEEE Int. Symp. on Fault Tolerant Computing, pp. 128{134. Milano:

IEEE Computer Society Press.

Littlewood, B. (1989). Predicting software reliability. Phil. Trans. Royal Stat. Society, Series A 327 ,

513{527.

Musa, J. D. (1979) Software reliability data. Technical Report, Rome Air Development Center.

Pham, H. (2000). Software reliability. Springer.


